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Infrared signatures of quantum bounce in collapsing geometry
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We study the radiation profile of the unitarily evolving wave packet constructed for
the quantum model of spherically symmetric dust shell collapsing in marginally bound
Lemâıtre-Tolman-Bondi (LTB) model. In this analysis, we consider the quantum model
of dust shell collapse in LTB spacetime,1 where the dust shell collapse to black hole singu-
larity is replaced by a bounce. We identify the observable natural to collapse/expansion
character of dust shell, and study the mode decomposition in the quantum model. The
incoming/outgoing modes are associated with the eigenfunctions of the Hermitian exten-
sion of the operator corresponding to this observable. For the wave packet representing
the collapsing and expanding phase of the dust shell, we estimate the contributions
of the incoming/outgoing modes. We find that the collapsing and expanding branches
do not comprise entirely of incoming and outgoing radiation. The dust shell dynamics
is insensitive to the large wavenumber modes as their contribution is negligible. Near
the bounce point, the contribution of outgoing (incoming) modes in the collapsing (ex-
panding) branch is substantial and it decreases as the dust shell moves away from the
singularity. In the early (later) stage of the collapsing (expanding) phase, the incoming
(outgoing) modes dominate. As the dynamics of the dust shell is sensitive to the near-
infrared modes of the radiation, the information of the bounce is carried over to infrared
modes much before it reaches the observer. In the infrared regime, a flip is observed from
largely incoming to largely outgoing radiation as the evolution progresses from collaps-
ing to expanding phase. The information of the short-scale physics is carried over to the
longest wavelength in this quantum gravity model.

Keywords: Shell collapse; quantum bounce.

1. Introduction

Ever since the original analysis by Hawking and Unruh,2, 3 the study of particle
content of the vacuum and the radiation profile in various geometries have been the
frontier research topic in the quantum effects in curved spacetime. These effects are
investigated in the context of quantum field theories in the curved spacetime.4 The
key result in this paradigm is that the particle content in the quantum states is not
a generally covariant notion, which is the gist of the Hawking-Unruh effect.

The analysis of matter collapse in a consistent quantum gravity model has been
addressed in the context of dust shell collapse,5, 6 LTB dust collapse model in canon-
ical quantum gravity7, 8 and loop quantum gravity.9–11 The radiation profile of dust
collapse in the LTB model is studied in12, 13 under the midisuperpace quantization
of this model. The Hawking radiation is recovered from the regularized solution of
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the Wheeler-DeWitt equation for this model and the non-thermal correction to the
spectrum and entropy associated are also computed. In this approach, the Hawk-
ing radiation is thought of as the projection of wave functional along the outgoing
modes defined in that approach.

There are some issues associated with the aforementioned quantum models. The
incoming/outgoing modes defined in this approach are not orthogonal, thus, render-
ing the notion of incoming/outgoing modes mathematically ill-defined. This issue
stems from the fact that the momentum operator in this model is not Hermitian.
Apart from that the states in the Kernel of Hamiltonian constraint need not be
orthonormal as they are degenerate states with zero eigenvalue.

In this work, we study the radiation profile for the unitarily evolving wave packet
constructed for the quantum model for dust shell collapse in a marginally bound
LTB geometry.1 For the collapsing/expanding character of the dust shell, momen-
tum conjugate to areal radius is a good indicator. In the quantum model, we study
the mode decomposition viz-a-viz the eigenstates of momentum operator.

2. Minisuperspace Construction of Dust Collapse in
Marginal LTB Model

LTB model is an inhomogeneous extension of the FRW model, which is spherically
symmetric and sourced by a non-rotational dust of energy density ε.14 The line
element for the LTB model is,

ds2 = −c2dτ2 + R′2

1 + 2f(ρ)dρ
2 +R2dΩ2, (1)

here τ is the dust proper time and R(τ, ρ) is the areal radius of dust shell with
coordinate label ρ at time τ , and f(ρ) is called the energy function. Here, we will
restrict ourselves with the marginally bound case of the LTB model for which f(ρ) =
0. Einstein’s equation for this model is,

F ′

R2R′
= 8πGε

c2 and RṘ2

c2 = F, (2)

where F (ρ) is first integral of Einstein’s equation and is equal to twice of the Misner-
Sharp(MS) mass15 for LTB spacetime. This model has a curvature singularity when
the cloud collapses to a point i.e., at R = 0.

Since the equation of motion which dictates the dynamics of the areal radius (2)
depends only on R and F , and not on their spatial derivatives, it implies that the
different dust shells are dynamically decoupled for a given mass function. We can
write an on-shell action which dictates the dynamics of the outermost dust shell.
The dynamics of the full dust cloud is then deduced from the action.1

S = −1
2

∫
dτRṘ2 (3)
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Here R is the areal radius of the outermost dust shell. The Hamiltonian for this
model is,

H = −P
2

2R (4)

Using Brown-Kuchař dust16, 17 as the matter source, the Hamiltonian constraint for
the model takes the form

H ≡ pτ +H ≈ 0. (5)

Since the momentum conjugate to scalar field τ appears linearly, the Wheeler-
DeWitt equation takes a Schrödinger equation like form,

i~
∂Ψ(R, τ)

∂τ
= 1

2R
−1+a+b d

dR
R−a

d

dR
R−bΨ(R, τ). (6)

The Hamiltonian is the product of areal radius and conjugate momentum, which im-
plies that it does not have a unique quantum counterpart and that the model suffers
from operator ordering ambiguity which is parameterized by a and b in equation (6).
The eigenvalue of the Hamiltonian is interpreted as the ADM energy. The Hilbert
space L2(R+, R1−a−2bdR) is chosen, that makes this Hamiltonian Hermitian. The
self adjoint extensions of the Hamiltonian (6) are discussed in.1 A unitarily evolving
wave packet is constructed from positive energy eigenstates,

φ1
E(R) = 2√

3
E

1
4 J 2|q|

3

(
2
3
√

2ER 3
2

)
. (7)

by choosing a Poisson-like distribution

A(
√
E) =

√
2λ 1

2 (κ+1)√
Γ(κ+ 1)

√
E
κ+ 1

2 e−
λ
2E , (8)

ψ(R, τ) =
∫ ∞

0
d
√
EφE(R)eiEτA(

√
E), (9)

where the parameters of the distribution satisfy κ ≥ 0 and λ > 0. The expectation
value of the Hamiltonian operator with this choice of distribution is inversely pro-
portional to λ. To simplify the expression, a prescription κ = |1 + a|/3 is adopted1

and the expression for the wave packet reduces to

ψ(R, τ) =
√

3R
1
2 (1+a+|1+a|+2b)√
Γ( 1

3 |1 + a|+ 1)

( √
2λ
3

λ
2 − iτ

) 1
3 |1+a|+1

e
− 2R3

9(λ2−iτ) . (10)

This choice comes at the cost that the distribution is now a function of operator
ordering parameters. Since the dependence of observables on this parameter is con-
tentious, one cannot be sure if it is a genuine signature of operator ordering or
just a dependence on the shape of the distribution. In this analysis, we will focus
on the radiation profile of the dust shell and address operator ordering ambiguity
elsewhere.18
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3. Mode Decomposition of Wave Packet

In the earlier midisuperspace models, various prescriptions are used to write incom-
ing and outgoing modes. In,12 the modes are associated with the asymptotic limit
of the solutions of the WDW equation on I+ written in terms of the Killing time.
While in,13 the modes are associated with the positive/negative frequency solutions
of the WDW equation after making transformation from the comoving time to the
Killing time. In all these prescriptions, the modes are not orthonormal, making
them ill-defined for the Bogoliubov analysis. The problem might lie with the fact
that the states belong to the Kernel space of the operator and are degenerate and
therefore, orthonormality is not guaranteed. Therefore, we need to identify another
observable suitable for the mode decomposition.

Classically, the momentum conjugate to areal radius is given by P = −RṘ
and we can associate positive momentum with the collapsing phase and negative
momentum with the expanding phase of the dust shell. Thus, the momentum op-
erator is a good choice for an observable that depicts the mode decomposition in
the quantum model. The model1 discussed in the previous section is robust enough
for us to accommodate Hermitian Hamiltonian and momentum operator. Although
the momentum operator on real half line is not self-adjoint, we will work with the
Hermitian extension of the momentum operator. The detailed discussion on the
self-adjointness and the Hermiticity of the momentum operator can be found in18

and we have shown that the states are orthogonal in this case, making them suitable
as incoming/outgoing modes.

Using the measure R2 following the quantum scattering theory in spherical polar
coordinates, we have a constraint 1+a+2b = 0 on operator ordering parameters. For
this model, the expectation value of the general observable in a general wave packet
is independent of the parameter b.18 Therefore it appears as a free parameter in the
model and the above constraint does not affect the physical content of the model. In
this case, the Hermitian extension of the momentum operator is P̂ = −iR−1∂RR.
The eigenfunction of the momentum operator with eigenvalue k is given by eikR/R,
where k ∈ R. The wave packet can be expressed in the form,

ψ(R, τ) =
∫ ∞

0
dE

∫ ∞
0

dk

(
A(k,E)e

ikR+iτE

R
+A(−k,E)e

−ikR+iτE

R

)
. (11)

The contribution of incoming/outgoing radiation in the dust cloud is estimated by
computing the projection of wave packet along incoming(uk,E ≡ eikR+iEτ/R) and
outgoing modes(u−k,E ≡ e−ikR+iEτ/R) .

ψ̃k(τ) = 〈uk,E(τ)|ψ(R, τ)〉 =
∫

dR R2 ψ(R, τ)e
−ikR−iEτ

R
, (12)

=
√

3e−iEτ√
Γ( 2

3 |b|+ 1)

( √
2λ
3

λ
2 − iτ

) 2
3 |b|+1 ∫

dR e−i kRR1+|b|e
− 2R3

9(λ2−iτ) , (13)

= C(τ)
∫

dR e−i kRR1+|b|e
− 2R3

9(λ2−iτ) . (14)
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The wavepacket in k space is normalized which implies |ψ̃k(τ)|2 gives the contri-
bution of modes with wavenumber k to the radiation profile at time τ . At τ = 0,
equation (14) can be written as

ψ̃k(0) = C(0)
(∫

dR cos (kR)R1+|b|e−
4R3
9λ − i

∫
dR sin (kR)R1+|b|e−

4R3
9λ

)
, (15)

and we can see, |ψk(0)|2 = |ψ−k(0)|2. Thus, at the point of classical singularity, the
number of incoming modes is equal to the number of outgoing modes for all k. On
the other hand, for finite τ , the equation (14) can be cast into the form,

|ψ̃k(τ)|2 = |C(τ)|2
∫
dR

∫
dS e−ik(R−S)(RS)1+|b|e

− 2R3

9(λ2−iτ)
− 2S3

9(λ2 +iτ) . (16)

Here, k → −k is same as τ → −τ . Thus, the ratio of incoming to outgoing modes
rk(τ) = |ψ̃k(τ)|2/|ψ̃−k(τ)|2 flips after the bounce happens i.e. rk(τ) = [rk(−τ)]−1,
which can be seen in Fig. 1. The difference between the number of incoming and
outgoing modes at an instant of time and at a fixed k can be written as,

δk(τ) = |ψ̃k(τ)|2 − |ψ̃−k(τ)|2, (17)

= −2i|C(τ)|2
∫
dR

∫
dS sin(k(R− S))(RS)1+|b|e

− 2R3

9(λ2−iτ)
− 2S3

9(λ2 +iτ) . (18)

δk(τ) vanishes when k → ∞, as lim
k→∞

sin(kx) = xδ(x) = 0. Thus, we expect the
ratio to approach unity for large k, which can be seen in Fig. 1. On the other hand,
for k → 0 we have

δk(τ) = 4k|C(τ)|2

9(|b|+8)/3 Γ
[
|b|
3 + 1

]
Γ
[
|b|+ 2

3

](
λ2

4 + τ2
) 2|b|+5

6

sin
(

1
3 tan−1

(
−2τ
λ

))
.

(19)

In the collapsing branch (τ < 0), this function is positive and therefore, the incoming
modes are dominating in this case. In the expanding branch (τ > 0), this function
is negative and the outgoing modes dominate in this case.

We have plotted the fraction of modes with wavenumber k and the ratio of the
incoming to outgoing modes for fixed time in the Fig. 1 with the parameters speci-
fying a narrow wave packet of unit energy. Early in the collapsing phase (τ = −10),
most of the contribution comes from the incoming modes and the outgoing modes
contribute a small fraction only in the infrared (small k) regime. As we approach
the classical singularity, the contribution of outgoing radiation in the collapsing
phase keeps on increasing and becomes equals to the contribution of incoming radi-
ation at the bounce point. After the bounce, initially in the expanding phase, there
is significant contribution of incoming radiation. As the expansion progresses, this
contribution keeps on decreasing to become negligible and contributes only in the
infrared regime.

In the early stage of collapse, the ratio of incoming to outgoing modes starts from
unity at k = 0 and comes back to one again at a finite wavenumber. In between,
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Fig. 1. Fraction of modes |ψ̃k(τ)|2 and ratio of the incoming to outgoing modes vs k at different
times. The blue shaded region gives the contribution of outgoing radiation in collapsing phase and
the orange shaded region gives the contribution of incoming radiation in expanding phase.

the ratio attains a maximum and oscillates before settling at unity. Since for large
wavenumbers, the contribution is minimal, these modes are insensitive to the dy-
namics of the dust shell. A ratio greater than one implies that the incoming modes
are dominating. As we approach the bounce point, the magnitude of the maximum
decreases and the ratio goes to unity at shorter wavenumber. At the bounce point,
this ratio is one for all wavenumbers. Apart from this, there exists a crossover
window of wavenumbers in which the fraction of outgoing modes is greater than
incoming modes in the collapsing phase when the dust shell is closer to the classical
singularity. This behavior is inverted for the expanding phase - the ratio attains a
minimum before settling at unity.

Therefore, we see that the small wavenumber (infrared) modes are most sensitive
to the dynamics of the dust cloud. If one observes in the infrared regime, there is an
instantaneous flip from largely incoming to largely outgoing radiation when the dust
shell goes from collapsing phase to expanding phase. Moreover, the contribution of
the outgoing/incoming radiation in the collapsing/expanding regime is coming from
the infrared part of the spectrum only. Thus, one should focus on the infrared regime
of the dust shell for a signature of quantum bounce.

We have plotted the radiation profile for the wave packets which represents low
energy dust shell broadly peaked (λ = 10) and high energy dust shells sharply
peaked (λ = 0.01) on the classical trajectory in Fig. 2. We see that for the case of
sharply peaked wave packet, the major contribution to radiation profile is coming
from incoming (outgoing) modes in the collapsing (expanding) regime even near
the classical singularity. Whereas, for low energy dust shells, the contribution of
incoming (outgoing) modes in expanding (collapsing) branch is significant even far
away from singularity.
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Fig. 2. Fraction of modes |ψ̃k(τ)|2 and the ratio of incoming to outgoing modes for wave at
different times. The parameters specify the high energy dust cloud (λ = 0.01) representing sharper
wave packet, and low energy dust cloud(λ = 10) representing broader wave packet.

At the classical singularity, the fraction of infrared modes is directly proportional
to the minimal size of the dust shell i.e., the bounce radius.18

|ψ̃k→0(0)|2 =
2(2|b|−5)/332/3Γ

(
|b|+2

3

)2
Γ
(

2|b|+4
3

)
√

2πΓ
(

2|b|+1
3

)
Γ
(

2|b|+3
3

) R̄(0). (20)

Thus, the infrared regime of the radiation profile provides a direct estimation of the
bounce radius.

4. Conclusions

In this work, we have studied the mode decomposition of wave packet constructed for
the Quantum LTB model. We have considered the minisuperspace construction of
the dust shell collapse in the LTB model.1 The classical model of dust shell collapse
exhibits black hole singularity which is replaced by bounce from the collapsing
phase to expanding phase in the quantum model. We have identified the observable
depicting mode decomposition, which is momentum conjugate to areal radius. After
identifying the incoming and outgoing modes with the momentum’s eigenstates
with positive and negative eigenvalues, we have estimated the contribution of the
incoming/outgoing modes in the contracting/expanding phase.

We choose the operator ordering parameters for which the Hamiltonian as well
as the momentum operator are Hermitian. This is achieved by working with R2

measure space and choosing the representation which is symmetric with this choice
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of inner product. This particular choice puts the constraint a+2b+1 = 0 on operator
ordering parameters.

We find that at the point of classical singularity or bounce point τ = 0, the
number of incoming and outgoing modes is the same. In the contracting branch,
apart from the incoming dust, we also have small contribution from the outgoing
dust in the infrared regime. As the dust shell continues to move towards the sin-
gularity configuration, the contribution of outgoing modes in the infrared regime
keeps increasing, culminating in an equal number of incoming and outgoing modes
at the point of singularity. This behavior is inverted in the expanding branch. There
exists a threshold wavenumber, above which the number of incoming modes is equal
to the number of outgoing modes. For the contracting branch, the ratio of incoming
to outgoing modes starts from one at k = 0, increases to attain a maximum, and
then settles back to unity. After the bounce, outgoing modes start to dominate with
a small fraction of incoming modes as well. As the dust shell expands, the fraction
of the incoming modes keeps decreasing and while the contribution of the outgoing
modes keeps increasing. At the later stage of dust shell expansion, most contribution
comes from the outgoing modes. Thus, we can conclude that in quantum bounce,
incoming radiation is always accompanied by outgoing radiation.

The infrared sector of the wave packet contains significant information about the
dynamics of the dust cloud. The major contribution to the incoming/outgoing dust
in collapsing/expanding branch comes from the modes with smaller wavenumber.
There is a flip from largely incoming to largely outgoing radiation, observed in
the infrared regime, as the evolution progresses from the contracting branch to the
expanding branch. Therefore, the observer should look at small wavenumber or large
wavelength modes to observe if the bounce has happened. Moreover, the fraction of
infrared modes near classical singularity is proportional to the bounce radius. Thus,
the infrared sector of the process apart from being highly sensitive to the dynamics
of the dust cloud is also a direct estimator of the bounce radius, thereby, providing
a unique infrared signature of the quantum gravity in the radiation profile of the
dust cloud.
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